Friday, July 28, 2017

TdF Speed Trends 1947 - 2017

The 2017 edition of the Tour was a pretty quick tour in terms of average speed, and I suspect the relative lack of mountains played its part in that. Having said that, I can't specifically say whether of not the number of ascent meters was substantially different, it was just an impression from looking at the overall route.

Last year I posted an item with various charts about speed trends for the Tour de France. If you want to know more about the charts, what they mean, the data and where I stole the idea for some of them from (thanks Robert Chung) then have a read of that earlier post - it's not overly long.

So here's an update of the charts to see where 2017 falls.

First the overall speed trend by year:


2017 was the second quickest Tour on record.

How about average stage distance?


Right in line with the overall trend of shorter average stage distances. This may well continue as the ASO experiments with more short punchy stages, plus the ITT distances were less than in most recent tours.

Here's the average speed v overall distance plot with each decade colour coded:


We can see 2017 is still within the speed v distance cluster of 21st century Tours.

And the residuals plot?


Here we see the 2017 edition is right in line with the expected trend.

Now the obvious question about the overall trends relate to two other factors besides overall distance, one being impact of doping during different eras and the other being total ascent meters during the tour as a proportion of total distance.

The doping stuff has been done to death here and elsewhere and there really isn't much in these plots to definitively say much about it anyway. You can look at the peak in residuals in the period of 1990s to 2000s and say "ah ha! doping!!" but then you'd also have to explain the other peak in residuals from late 1950s to 1960s. No EPO or blood bags back then. So while doping has played its part, it's not the only or whole story.

About the amount of climbing though, in the last year I made an attempt to work out the number of climbs ascended each Tour. I went through online archive data to count the number of times each col was climbed in the tour for each year. It was pretty laborious research.

I got to something like 750 different mountains in the database and counts for each year, but was unable to complete the project of identifying the data for each (distance, vertical metres, gradient), nor did the archive identify in which direction the mountain was ascended. which matters quite a bit for some climbs.  Add to that the archives were not consistent in which climbs were included in the stage descriptions - and climb categorisation (i.e. HC, Cat 1, 2, 3, 4) has evolved over the years.

It became apparent that unless there is a source available that provides the actual race routes, then attempting to work out the meters ascended for each year was a pretty futile task. I gave it a go though.

Perhaps someone out there has actual race route data going back to 1947? If that's the case then we can map them using current technology to come up with a pretty decent indicator of ascent and descent metres for each edition of the Tour.

Conclusions? Not a lot with respect to 2017 edition. It's pretty much on trend.

Read More......

Tuesday, January 24, 2017

Do I need a power meter?

On the Slowtwitch forum recently, a frequently asked question was posted about whether one needs a power meter. This question has come up regularly on cycling and triathlon forums for the past decade or more and there have been a number of posts and articles written by plenty of power meter advocates over the years (including myself) that have laid out the case.



In the specific thread there were a number of responses, mostly with a heavy focus on training to a specific intensity, pacing, that sort of thing. All of which are fine, but in my opinion these responses are not overly compelling reasons to use a power meter.

It's actually a really good question, and I don't think many people have adequately answered it. So I suspect it might be a theme worthy of blogging about from time to time.

I'm not going to delve into it deeply today, but thought I'd keep a copy of my forum response here on the blog for easy reference, and perhaps in future posts I'll explore some of the reasons given by myself and others and whether they stack up as sound and valid for using a power meter versus an alternative.

Here is the question posed in that thread:
I have been read the time crunched triathlete. Carmichael makes it sound like you can get pretty good result from a HR monitor. Sooo do I really need a power meter
My response is reproduced below:


You don't get good results from any device. You get good results from executing sound basic training principles of consistency, frequency, progressive overload with recovery as needed, specificity and individualisation of your training and development needs.

Most half decent training plans and basic monitoring tools (a watch, RPE, HR and even power meter used in a really basic manner) will get people some way towards executing these principles, e.g. it's very rare that someone I give a 2-3 month training plan to and who executes it does not improve, however such plans sacrifice some level of load management optimisation, specificity and individualisation.

Power meters (good ones at least) and the data they produce provide you with objectivity in assessing the training you are actually doing v. what you think you are doing. Neither RPE or HR can do that.

I mean far more than monitoring your work rate at any particular moment but right though to considering what you are doing in a more global sense. How what you are doing now (or previously, or this week/month etc) fits in with and impacts your season and even your entire athletic career.

Power data also helps one to better understand their current and historical physiological capabilities and its relationship with and response to your training, your physical attributes (e.g. aerodynamics), the specific demands of your races or goal events, and can help assessment of some riding/racing skills/execution, which leads to individualising and optimising your training and development program to suit your specific needs.

As a communications and logging tool, the objective power data balances the subjective feelings about how you are going. Both matter and it's more useful when subjective and objective are assessed together.

And interestingly, and somewhat in opposition to what many seem to think, power meters can actually provide you with a lot of freedom in the way you go about your training since once you recognise what's actually important you realise there are many ways to skin the training cat. Applying good training principles does not automatically imply overly regimented training.

To use power meters wisely and to a reasonable proportion of their potential for performance improvement requires an investment on your part to learn how to understand and apply the data.

Or you could just use it as a fancy speedo, effort monitor and ride logger. If that's all you intend to do though, I'd save your money and just follow a half decent plan and keep things fun.

Read More......